INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS
Int. J. Commun. Syst. 2008; 21:115-133
Published online 8 March 2007 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/dac.879

On a trie partitioning algorithm for power-efficient TCAMs

Haibin Lu* T

Department of Computer Science, University of Missouri, Columbia, MO 65211, U.S.A.

SUMMARY

Internet routers conduct routing table (RT) lookup based on the destination IP address of the incoming
packet to decide which output port to forward the packet. Ternary content-addressible memories (TCAM)
uses parallelism to achieve lookup in a single cycle. One of the major drawbacks of TCAM is its high-
power consumption. Trie-based architecture has been proposed to reduce TCAM power consumption. The
idea is to use an index TCAM to select one of many data TCAM blocks for lookup. However, power
reduction is limited by the size of the index TCAM, which is always enabled for search. In this paper we
develop a simple but effective trie-partitioning algorithm to reduce the index TCAM size, which achieves
better reduction in power consumption, and at the same time guarantees full TCAM space utilization.
We compared our algorithm (LogSplit) with PostOrderSplit (EEE INFOCOM, 2003). For two real-world
RTs (AADS and PAIX), the size of the index TCAM generated by LogSplit is 55-70% of that generated
by PostOrderSplit; the largest power reduction factor of LogSplit is 41 for AADS and 68 for PAIX, while
the largest power reduction factor of PostOrderSplit is 33 for AADS and 52 for PAIX. The improvement
is even more significant in the worst case: the size of the index TCAM generated by LogSplit is 18-30%
of that generated by PostOrderSplit for IPv4, and less than 1% of that generated by PostOrderSplit for
IPv6; the largest power reduction factor of LogSplit is 173 for both IPv4 and IPv6, while the largest
power reduction factor of PostOrderSplit is only 82 for IPv4 and 41 for IPv6. Copyright © 2007 John
Wiley & Sons, Ltd.

Received 12 May 2006; Revised 8 January 2007; Accepted 8 January 2007

KEY WORDS: TCAM; router; IP lookup; packet forwarding; power-efficient

1. INTRODUCTION

Packet forwarding uses a routing table (RT) to find the next hop for each incoming packet. Each
entry in the RT is a pair of the form (prefix, next hop). The packet-header field used is the

*Correspondence to: Haibin Lu, Department of Computer Science, University of Missouri, Columbia, MO 65211,
U.S.A.
TE-mail: luhaibin@missouri.edu

Contract/grant sponsor: National Science Foundation; contract/grant number: CNS-0423386

S © (WWILEY

S i ®
Copyright © 2007 John Wiley & Sons, Ltd. e InterSCIence

DISCOVER SOMETHING GREAT

116 H. LU

destination IP address of a packet. When there are several prefixes that match the destination IP
address of a packet, the longest-prefix match rule is used to select one of them. Let Imp(p) be the
longest matching prefix in the RT for prefix p (note that IP address is a prefix with length W, where
W is equal to 32 for IPv4 and 128 for [Pv6). When RT = {x, 0%, 1%, 001, 0000, 0010, 00001}
(we omit the action part since it does not affect the algorithms we will discuss), 0000 is matched
by 0x and 0000x; Imp(0000x) = 0000, since the length of 0000« is four and the length of Ox is
one; similarly, /mp(000%) = 0x. Assume W = 6, the destination IP address 000011 is matched by
0x, 0000 and 00001, so Imp(000011) =00001:.

Ternary content-addressible memories (TCAMs) use parallelism to perform lookup in a single
cycle [1]. Each memory cell of a TCAM may be set to one of three states: 0, 1, and ‘don’t care’.
The prefixes are stored in a TCAM in descending order of prefix length. Assume that each word
of the TCAM has 32 cells. The prefix 10* is stored in a TCAM word as 10???...7, where ? denotes
a ‘don’t care’ and there are 30 ?s in the given sequence (W =32 for IPv4). To do a longest-prefix
match, the destination IP address is matched, in parallel, against every TCAM entry and the first
(i.e. longest) matching entry is reported by the TCAM arbitration logic. So, using a TCAM and a
sorted-by-length linear list, the longest matching-prefix can be determined in O (1) time. A prefix
may be inserted or deleted in O(W) time [2]. Although TCAMSs provide a simple and efficient
solution for RT lookup, this solution has very high-power consumption (up to 15 W for a current
high-density TCAM). High-power consumption increases cooling cost and limits the number of
ports in a single board.

Zane et al. [3] use two architectures, bit-selection based and trie based, to reduce TCAM power
consumption. The idea is to reduce the number of TCAM entries that are checked during lookup.
The schemes use multiple TCAMs or a single TCAM with multiple blocks. The bit-selection-based
architecture assumes that the prefix length is between 16 and 24 (thus not suitable for IPv6) and
is less efficient in reducing power consumption than the trie-based architecture. In the trie-based
architecture, an index TCAM is searched first and the result is used to select one of many data
TCAM blocks. The RT is partitioned into many groups. The partitioning algorithms include Sub-
treeSplit and PostOrderSplit [3]. SubtreeSplit may waste up to half of data TCAM entries, and
thus is too space-inefficient to be practical. PostOrderSplit fully utilizes each data TCAM block
except the last one. However, it generates a large index TCAM. Each data TCAM block contributes
up to W 4+ 1 entries to the index TCAM. Thus, for search engine with 256 data TCAM blocks,

Table I. Notation.

Symbol Definition

RT Routing table

n The number of prefixes in RT

m The number of entries in a data TCAM block

d Destination IP address

Imp(p) The longest matching prefix in RT for prefix p
x.left Left child of node x

x.right Right child of node x

Xx.parent Parent of node x

subtrie(x) Subtree rooted at node x (including x itself)
prefix(x) The prefix denoting the path from the root to node x
count(x) The number of prefixes € RT stored in subtrie(x)
cp(x) Covering prefix of node x. cp(x) = Imp(prefix(x))

Copyright © 2007 John Wiley & Sons, Ltd.

Int. J. Commun. Syst. 2008; 21:115-133

DOI: 10.1002/dac

ON A TRIE PARTITIONING ALGORITHM FOR POWER-EFFICIENT TCAMs 117

the index TCAM has 256 x 33 = 8446 entries (270 kbits) for IPv4 and 256 x 129 =33 024 entries
(4.3 Mbits) for IPv6. Since the index TCAM is always on, its power consumption is significant,
especially for IPv6 router tables (a current 16 Mbits TCAM has a power consumption of up to
15 W). Since the router hardware designers have to use the worst-case bound to determine the
size of an index TCAM and the power budget, it is necessary to reduce the worst-case size of the
index TCAM.

The contribution of this paper is a new trie-partitioning algorithm, LogSplit, in which each data
TCAM block adds at most log, m entries to the index TCAM, where m is the number of entries
in one data TCAM block.

The rest of the paper is organized as follows. Section 2 gives the background of the trie-based
architecture and discusses the PostOrderSplit algorithm [3]. Section 3 proposes and analyses the
LogSplit algorithm. Section 4 compares SubtreeSplit [3], PostOrderSplit [3] and our LogSplit.
Section 5 summarizes related work, and Section 6 gives the conclusion. Table I lists the notations
we will use in this paper.

2. BACKGROUND

The trie-based architecture [3] is shown in Figure 1. The data TCAM consist of multiple TCAM
blocks (for example, 5-bit ID is used to select one of 32 TCAM blocks). Index SRAM stores
the block ID. Index TCAM is searched first using the destination IP address, and the index of
the longest matching entry is used to retrieve the block ID from the index SRAM. Then the
corresponding data TCAM block is enabled for search. Finally, the index of the longest matching
entry in the selected data TCAM block is used to retrieve the next hop information stored at the
data SRAM. Since only the index TCAM and one of the data TCAM blocks are enabled for search,
power consumption is greatly reduced.

To populate data TCAM blocks and index TCAM, a one-bit trie is first constructed. Sup-
pose RT = {x, 0%, 1%, 001, 0000%, 0010%, 00001%}. The corresponding one-bit trie is shown in
Figure 2. At an internal node of a one-bit trie, the branch is determined by the next lead-
ing bit of the input prefix. Bit O leads to the left child and bit 1 to the right child. The path
from the root to node x can be represented by prefix(x). prefix(root) = x, prefix(root .left) = Ox,
prefix(root.right) = 1%, and so on. In general, prefix(x) is 0 concatenated with prefix (x.parent) if
x is the left child of x.parent, and 1 concatenated with prefix(x.parent) if x is the right child of

>
> 1 > —» Next Hop
Destination
B
IP address o
Index Index
TCAM SRAM
Data TCAM Data SRAM
Figure 1. Trie-based architecture.
Copyright © 2007 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2008; 21:115-133

DOI: 10.1002/dac

118 H. LU

Figure 2. One-bit trie for prefix set RT = {x, O, 1%, 001%, 0000x, 0010, 00001%}. The shaded nodes
store prefixes € RT. Note that all leaf nodes are shaded.

x.parent. Since prefix(x) is unique, we can use prefix(x) to refer to node x. For instance, ‘node *’
refers to the root and ‘nodelx’ refers to the right child of the root. The shaded nodes in Figure 2
store prefixes from the RT. Using a one-bit trie, the Imp of any prefix p is easy to figure out. The
Imp(p) is p if node p is shaded, or it is the prefix value of the nearest shaded ancestor of node p.
For example, Imp(00001x) is 00001% and Imp(000x) is Ox.

Second, one-bit trie is partitioned. At each step, a qualified subtrie is pruned completely. The
qualification of a subtrie is determined by partitioning algorithms, e.g. SubtreeSplit [3], PostOrder-
Split [3], and our LogSplit. In Figure 2, subtriel is pruned first, then subtrie2, and finally the
remaining trie. Note that the subtries pruned are disjoint and their union is the original trie.

Third, for each subtrie pruned (let r¢ be the root of this subtrie), we associate a covering prefix
cp(rt) with rt. The covering prefix of node x, cp(x), is defined as Imp(prefix(x)). For example,
in Figure 2, the covering prefix of node 000 is Ox, the covering prefix of node Ox is Ox, and
the covering prefix of node x is x. Note that if prefix(rt) € RT, then cp(rt) is equal to prefix(rt).
Since RT contains default prefix *, cp(rt) always exists. The purpose of associating cp(rt) with
every pruned subtrie is to ensure that a subtrie, when searched, can always return the Imp(d).
Suppose the destination address d = 000100 (assume W = 6). The subtriel in Figure 2 is searched
for Imp(d). Note that subtriel was pruned already and the original trie is not available for search.
Searching subtriel would return null if cp(node 000%) was not associated with subtriel. With the
covering prefix, Imp(000100) = cp(node 000x) = 0. It is easy to see that in order to return the
correct /mp(d), a proper subtrie needs to be located first. For example, searching /mp(000100) in
subtrie3 will return a wrong result. The index TCAM discussed in the next paragraph is used to
locate a proper subtrie.

Fourth, each pruned subtrie contributes one prefix, the prefix of the root of this subtrie, to
the index TCAM. In Figure 2, subtriel contributes 000*, subtrie2 contributes 0%, and subtrie3
contributes *. Thus, the index TCAM contains prefixes {000, Ox, x}. The longest matching prefix
in the index TCAM leads to a proper subtrie for search. For example, when the destination IP
address d = 001000 (assume W = 6), Ox is the longest matching prefix in the index TCAM, subtrie2
is located and searched, and 0010 is returned as the longest matching prefix. When d = 000100
(assume W =6), 000 is the longest matching prefix in the index TCAM, subtriel is located and
searched, and Ox is returned as the longest matching prefix.

Copyright © 2007 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2008; 21:115-133
DOL: 10.1002/dac

ON A TRIE PARTITIONING ALGORITHM FOR POWER-EFFICIENT TCAMs 119

Finally, we use data TCAM blocks to store these pruned subtries and their covering prefixes.
SubtreeSplit [3] uses a separate TCAM block for each subtrie. So, under SubtreeSplit, the first
data TCAM block contains {0000x, 00001, 0} (note that Ox is the covering prefix), the second
data TCAM block contains {0010x, 001x%, 0%}, and the third data TCAM block contains {x, 1x}.
PostOrderSplit [3] and our LogSplit may store multiple subtries in one data TCAM block.

2.1. SubtreeSplit and PostOrderSplit

Zane et al. [3] propose SubtreeSplit and PostOrderSplit for partitioning trie. Let us first define
count(x) for trie node x. The count(x) is the number of prefixes € RT stored in subtrie(x).

count(x.left) + count(x.right) if x #null and prefix(x) ¢ RT
count(x) = 3 count(x.left) + count(x.right) + 1 if x # null and prefix(x) € RT (D
0 if x =null

Figure 3 gives the count values of all trie nodes in Figure 2. Note that the count value of a leaf
node is always one.

SubtreeSplit traverses trie in post order and checks every node encountered. When count(x)>
[m/2] and count(x.parent)>m, where x is the current node, subtrie(x) is pruned and stored in a
data TCAM block. The algorithm then moves on to a new data TCAM block. The advantage of
SubtreeSplit is that one data TCAM block contributes one prefix to the index TCAM. However,
in the worst case, a data TCAM block is only 50% full.

To fill data TCAM blocks, the PostOrderSplit algorithm is proposed. PostOrderSplit allows
multiple subtries in each data TCAM block. It traverses the one-bit trie in post order and prunes
subtrie(x) when either count(x) = s or (count(x)<s and count(x.parent)>s), where x is the current
node and s is the number of empty entries left in the current data TCAM block. The subtrie(x) is
added to the current data TCAM block and the s value is updated. When the current data TCAM
block is full, the algorithm moves on to a new data TCAM block.

It is easy to see that PostOrderSplit may prune subtries with only a few prefixes each. This
happens when count(x) is small and count(x.parent)>s, i.e. the count value of the sibling of
node x is big. Figure 4 gives an example of the execution of the PostOrderSplit algorithm. The
algorithm prunes four subtries with one prefix each. In the worst case, PostOrderSplit needs W + 1

Figure 3. count values of the trie nodes in Figure 2.

Copyright © 2007 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2008; 21:115-133
DOL: 10.1002/dac

120 H. LU

55 54 53

(1).s=54 (2).s=353 (3).s=52 (4).s=51

Figure 4. PostOrderSplit may prune a subtrie containing a few prefixes each. The number beside node x
is count(x). The shaded node x has prefix(x) € RT.

subtries to fill one data TCAM block [3]. Since each subtrie contributes one prefix to the index
TCAM, one data TCAM block may contribute up to W + 1 prefixes to the index TCAM.

The drawback of PostOrderSplit is that the size of the index TCAM may be big. For example,
when 256 data TCAM blocks are used, the index TCAM needs 8448 entries (270 kbits) for IPv4
and 33024 entries (4 Mbits) for IPv6, in the worst case. Large index TCAM size limits the
ability to reduce power consumption, since the index TCAM is always on for search. The power
consumption of a 270 kbit TCAM may be affordable, but the power consumption of a 4 Mbit
TCAM is definitely significant, since a current 16 Mbit TCAM consumes up to 15 W when all
entries are enabled. One may argue that the case in Figure 4 is rare. However, hardware designers
have to decide on a size for the index TCAM. The question then becomes, what is the right size
for index TCAM? Since RTs are frequently updated and are growing over time, the worst case is
usually used to allocate the power budget and the index TCAM.

The average size of an index TCAM is smaller than that in the worst case. We can certainly
divide the index TCAM into blocks and enable only those blocks that contain prefixes. However,
we may need to turn on several index TCAM blocks, and extra hardware is needed to select one
output from the many outputs of these index TCAM blocks. Beside, this approach does not reduce
the worst-case size of the index TCAM.

3. LOGSPLIT: A NEW TRIE-PARTITIONING ALGORITHM

In this section we present a new algorithm to partition a one-bit trie. This algorithm greatly reduces
the size of the index TCAM. More specifically, each data TCAM block contributes at most log, m
entries to the index TCAM, where m is the number of entries in a data TCAM block. The algorithm
works by finding a subtrie with at least [e/2] prefixes at each iteration, where e is the number of
empty entries in the current data TCAM block. Initially e =m and is updated at each iteration.

3.1. The algorithm

We first show a property of the count value of a trie node as computed using Equation (1). Lemma 3
is the key for our trie-partitioning algorithm.

Copyright © 2007 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2008; 21:115-133
DOL: 10.1002/dac

ON A TRIE PARTITIONING ALGORITHM FOR POWER-EFFICIENT TCAMs 121

Lemma 1
If x # null, then one of the following is true.

1. count(x) = count(x.left).
2. count(x) = count(x.right).
3. count(x)>count(x.left) and count(x)>count(x.right).

Proof
This lemma follows from Equation (1). O

Lemma 2
If x # null, then there is a node z in subtrie(x) such that (count(z) = count(x) and count(z)
>count(z.left) and count(z)>count(z.right)). Note that z may be x itself.

Proof

Let z=x. The algorithm walks down the trie. If count(z) = count(z.left), then the algorithm
moves to z.left. If count(z) = count(z.right), then the algorithm moves to z.right. Otherwise, the
algorithm returns z. Since count(u) = 1>count(u.left) = count(u.right) =0 for any leaf node u,
the algorithm will always terminate and return z. According to Lemma 1, count(z)>count(z.left)
and count(z)>count(z.right). O

Lemma 3
If count(x)>s where s is a positive integer, then there is a node y in subtrie(x) such that
[s/2]<count(y)<s.

Proof

Suppose there is no node y in subtrie(x) such that [s/2]<count(y)<s. Then, for any node y
in subtire(x), count(y) is either greater than s or smaller than [s/2]. Let cz be the smallest
count value larger than s. Let u be the node such that count(u) =cz (if there are more than
one such node, we arbitrarily pick one). According to Lemma 2, there is a node z in subtrie(u)
such that

count(z)=cz and count(z)>count(z.left) and count(z)>count(z.right)

Under our assumption, there is no node y such that [s/2]<count(y)<s. Hence, count(z.right)
<[s/2] and count(z.left)<[s/2] must be true, since count(z)(=cz) is the smallest count value
larger than s. However, from Equation (1), count(z)<count(z.left) + count(z.right) + 1<[s /2] —
14 [s/21 =14+ 1=2[s/2] — 1<s. This contradicts count(z)>s. O

Figure 5 gives the algorithm to find node y as described in Lemma 3. The parameter s is a
positive integer. The algorithm assumes count(root)>[s/27. Since the algorithm starts at the root
of the trie and walks down the trie in binary-search fashion, it takes O (W) time to find node y. Let
s =3 and use Figure 3 as an example. The algorithm starts at the root, checks node 0, node 00x,
and then node 000x*. Since s >count(node 000%) =2>[s /2], node 000x% is returned.

Theorem 1
Given that count(root)>[s/2] where s is a positive integer, the algorithm in Figure 5 correctly
returns node y such that [s/2]<count(y)<s.

Copyright © 2007 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2008; 21:115-133
DOL: 10.1002/dac

122 H. LU

//precondition: count(root) > [5].
Algorithm getNodeY (s){
//return node y such that [5] < count(y) < s
T = root;
while(count(z) > s){
if (count(x. left)> [5])

r=ux.left;
else
r = x.right;
¥
return z;

}

Figure 5. Algorithm to find node y in the one-bit trie such that [s/2]<count(y)<s.

Proof
The algorithm starts at the root. If count(root)<s, the while loop is not executed and the algorithm
returns root. Since [s/2]<count(root), we find y.

If count(root)>s, the while loop is executed. The algorithm walks down the trie. If count
(x.left)>[s /27, then either count(x.left)>s or [s/2] <count(x.left)<s. If count(x.left)>s, there
must be a node y in subtrie(x.left) according to Lemma 3. The algorithm moves to x.left. If
[s/2]<count(x.left)<s, the while loop terminates and we find y.

If [s/2]>count(x.left), we goes to x.right. The count(x.right) is not smaller than [37; other-
wise, count(x)<count(x.left) + count(x.right) + 1<[s/2] — 1+ [s/2] — 1+ 1=2[s/2] — 1<s.
Therefore, either count(x.right)>s or [s/2]<count(x.right)<s. If count(x.right)>s, there must
be a node y in subtrie(x.right) according to Lemma 3. The algorithm moves to x.right. If
[s/2]<count(x.right)<s, the while loop terminates and we find y.

Since such y must exist according to Lemma 3, the while loop will eventually terminate. [

LogSplit algorithm (Figure 6) uses the get NodeY function. The algorithm continuously finds
and prunes subtrees until the remaining trie contains no more than m prefixes (Line 02). The
algorithm uses getNodeY (Line 07) to find a subtrie(y) with at least [e/2] prefixes, where e is
the number of empty entries in the the current data TCAM block. The algorithm prunes subtrie(y)
and adds prefixes in subtrie(y) to the current bucket. If prefix(y) ¢ RT, cp(y) is added to the current
bucket. If prefix(y) € RT, there is no need to add cp(y), since cp(y) is equal to prefix(y) in this
case. The value e is updated accordingly and is reduced by at least half of its previous value. The
inner loop continues until the current bucket is full (Line 06). Note that the algorithm reduces e
by one (Line 05) after setting e to m (Line 04) in order to have an empty entry for cp(y) when
prefix(y) ¢ RT. This may leave one entry unfilled in each data TCAM block.

Figure 7 gives the execution of LogSplit on the trie in Figure 4. The algorithm prunes
a subtrie with 53 prefixes. The covering prefix is also added to the bucket. The algorithm
then terminates. We will use Figure 2 as another example. Let m =4. The algorithm prunes
subtriel first, then subtrie2. Finally, the remaining trie, subtrie3, is pruned (Lines 17-19 in
Figure 6).

Copyright © 2007 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2008; 21:115-133
DOL: 10.1002/dac

ON A TRIE PARTITIONING ALGORITHM FOR POWER-EFFICIENT TCAMs 123

Algorithm LogSplit(m) {

01 =0

02 while(count(root) > m){ // root is the root of the original trie.

03 i =1+ 1; // allocate a new bucket. bucket; will be assigned to the i-th data TCAM
block.

04 e =m; // e is the number of empty entries.

05 e =e—1; // allocate an entry for a potential covering prefix.

06 while(e > 0){

07 y = getNodeY (e);

08 Prune subtrie(y); Add prefixes in subtrie(y) to bucket;; e = e — count(y);

09 if(prefiz(y) ¢ RT)

10 {Add ¢p(y) to bucket;; e =e — 15}

11 Add prefiz(y) to the index TCAM;

12 for (each node z along the path from root to y.parent)

13 count(x) = count(x) — count(y);

14 1

15}

16 if(count(root) > 0){

17 i =1+1; // allocate a new bucket.

18 Prune subtrie(root); Add prefixes in subtrie(root) to bucket;;

19 Add prefiz(root) to index TCAM;

20 }

21 return buckety, bucketsy, - - -, bucket;;

¥

Figure 6. The new algorithm to partition a one-bit trie.

(1).m=54,e=53 (2).e=0

Figure 7. The execution of LogSplit on the trie in Figure 4. m = 54.

Theorem 2

Let m be the number of entries in a data TCAM block. For each data TCAM block, the LogSplit
algorithm in Figure 6 adds at most log, m prefixes into the index TCAM and generates at most
log, m covering prefixes.

Proof

The theorem is true since the value e is reduced by at least half of its previous value at each
iteration (Line 08 in Figure 6). |
Copyright © 2007 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2008; 21:115-133

DOI: 10.1002/dac

124 H. LU

subtrie2 - _ oot~ subtrie3
™y N

I
1
1
1
|
|

\
\
l
!

|

() d=001111

Figure 8. The destination address d =001111. Shaded nodes store the prefixes in RT.

Theorem 3
Searching the index TCAM and the data TCAM blocks populated by the LogSplit algorithm returns
Imp(d) for any destination address d.

Proof
LogSplit partitions the original trie. Let{ST}, ST», ..., ST;} be the resulting subtries, where ST;
is a set of trie nodes. This set has the following properties:

P1: These subtries are disjoint. That is, ST; N ST; = for any i # j.

P2: The union of these subsets is equal to the set of the nodes in the original trie.

P3: If a node x € ST; is an ancestor of a node y € ST; (i # j), then u is not a descendant
of v for any node u € ST; and any node v € ST;. This is because a complete subtrie is removed
whenever LogSplit prunes a subtrie (Lines 08 and 18 in Figure 6).

With these three properties, we first give an intuitive proof of the theorem. We use the one-
bit trie in Figure 2 as an example. Let d =001111. We complete the path that leads to node d
(Figure 8(a)). We use hexagons to depict the nodes we just added. The nodes in the original
trie are depicted by circles. We then remove those nodes in Figure 8(a) that are not ancestors of
node d. The remaining trie is shown in Figure 8(b). The remaining nodes form a chain from the
root to node d. The chain contains all prefixes in RT that match d. The nodes that store these
prefixes are shaded. The chain (excluding hexagonal nodes) was partitioned into disjoint segments
by LogSplit. The prefix value of the root of each chain segment was added to the index TCAM.
Searching in the index TCAM leads to the chain segment that is the lowest in the original trie.
Searching this chain segment (subtrie2 in this case) returns the correct /mp(d) = 001, since there
are shaded nodes in this chain segment. It is possible that the chain segment contains no shaded
nodes. Let d =000110. After we repeat the process just described, we get a chain as shown in
Figure 9(b). Searching in the index TCAM leads to a chain segment (subtriel in this case). There
are no shaded nodes in this chain segment. However, the covering prefix of the root of this chain
segment (Ox in this case) is saved together with subtriel and is the longest matching prefix for d.

Below is the formal proof. Given a destination IP address d, the longest matching prefix in the
index TCAM leads to subtrie ST; with r#; as its root. Note that this longest matching prefix in
the index TCAM is prefix(rt;). Since we associated cp(rt;) with rt; if prefix(rt;) ¢ RT, searching
ST; always returns a matching prefix. Let p; be the longest matching prefix in ST; U {cp(rt;)}.
We argue that no matching prefix exists in R7 that is longer than p;. Suppose there is a longer
matching prefix than p;. We will call it pp. Then node p; is a descendant of node p;. We consider
two cases: node p; € ST; and node pi ¢ ST;.

Copyright © 2007 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2008; 21:115-133
DOL: 10.1002/dac

ON A TRIE PARTITIONING ALGORITHM FOR POWER-EFFICIENT TCAMs 125

subtrie2 ____
10
i

00001%>___/
(a)

d=000110
(b)

Figure 9. The destination address d =000110. Shaded nodes store the prefixes in RT.

(1) node p; € ST;. That is, node p; is an actual node inside the subtrie S7;.

(1.1) node py € ST;. Then searching subtrie(rt;) will return p; instead of p;. This is a
contradiction.

(1.2) node py ¢ ST;. That is, node p is in a different subtrie, say, ST; (let r¢; be the root
of this subtrie). Note that node p; is a descendant of node p;. From the third property
of the set {STy, STz, ..., ST;}, we know that rt; is a descendant of rf;. Hence, in
the index TCAM, prefix(rt;) is a longer matching prefix for d than prefix(rt;). This
is a contradiction.

(2) node p1 ¢ ST;. That is, p; is cp(rt;) and the node p; is an ancestor of rt;. Note that node
¢p(rt;) may not be an actual node inside S7;. For instance, in Figure 2, the covering prefix
of the root of subtriel is Ox.

(2.1) node p; € ST;. Similar to Case (1.1).

(2.2) node py ¢ ST;. That is, node p; is in a different subtrie, say, ST; (let r¢; be the root
of this subtrie). Since node p; is an ancestor of r#;, rt; may be a descendant of r;
or an ancestor of rt;.

(2.2.1) rt; is a descendant of rf;. Since p, matches d and p2 C prefix(rt;), prefix
(rt;) matches d. Thus, in the index TCAM, prefix(rt;) is a longer matching
prefix for d than prefix(rt;). This is a contradiction.

(2.2.2) rt; is a ancestor of rt;. The result of searching Imp(d) in the index TCAM
tells us that prefix(rt;) matches d. Note that p, also matches d. From the
third property of the set {ST1, ST», ..., ST;}, we know that node p> is an
ancestor of rt;. Hence, the covering prefix of r¢; is p, instead of p;. This is
a contradiction. O

3.2. Time complexity

The algorithm makes at most log, m iterations to fill each bucket and each iteration invokes
getNodeY (), which takes O (W) time each. Hence, it takes O (W log, m) time to fill each bucket,
excluding the time spent adding prefixes in the subtrie to the current bucket. The total time of
adding the prefixes to the buckets is the size of the trie, which is O (nW). Therefore, the overall
time complexity of LogSplitis O (nW+kW log, m) = O (nW), where k = | (n+m)/(m—log, m)|

Copyright © 2007 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2008; 21:115-133

DOI: 10.1002/dac

126 H. LU

is the total number of data TCAM blocks (See Section 4.2). The time complexities of SubtreeSplit
and PostOrderSplit [3] are also O (nW).

4. EXPERIMENT

In Section 4.1, we present the experiment results of applying SubtreeSplit, PostOrderSplit and
LogSplit to the RTs we obtained. These results assumes that RTs are static. However, in prac-
tice, RTs change over time and the distribution of the prefixes also changes. So the size of the
index TCAM that is generated by these algorithms for a single RT cannot be reliably used as a
guideline to decide the actual size of the index TCAM. Instead, the worst-case scenario is usually
used to guide the design. We discuss the worst-case performance of these three algorithms in
Section 4.2.

4.1. Performance on two routing tables

The IPv4 RTs we used are from [4]. The RT AADS was obtained on 22 November 2001, while
PAIX was obtained on 13 September 2000. AADS has 31828 prefixes and PAIX has 85988
prefixes. We also tested other RTs such as Pb and MaeWest. The results are similar to that on
AADS and PAIX. Due to space limitations, we only list the results on PAIX and AADS.

The time to build the trie and run the algorithms (Table II) is about 110 ms for AADS and about
250 ms for PAIX on a Pentium 4 1.5 GHz PC. The run time listed in Table II is the average of
10 run times. The time to run each algorithm changes little when m changes, because the time
to build the trie and add prefixes to buckets dominates the time to find subtries. The codes of all
three algorithms are not optimized for speed. We use recursion to simplify the codes. As shown
in Table II, the run time is quite acceptable.

Given the size of a data TCAM block, m, we obtained the number of data TCAM blocks needed
(Table III, plotted in Figure 10), the number of the index prefixes generated (Table IV, plotted in
Figure 11), and power reduction achieved (Table V, plotted in Figure 12).

Table III lists the number of data TCAM blocks generated by these three algorithms versus the
size of a data TCAM block. The number of data TCAM blocks used by SubtreeSplit is 25-38%
(32% on average) more than that used by PostOrderSplit or LogSplit. PostOrderSplit and LogSplit
fill all data TCAM blocks except the last block. They use the same number of data TCAM blocks
except when m = 128. When m = 128, PostOrderSplit uses one more block than LogSplit. This is
because PostOrderSplit generates more covering prefixes.

Table II. Run time (in milliseconds) versus the size of a data TCAM block.

m 128 256 512 1024 2048 4096

SubtreeSplit 107 107 107 108 110 109

AADS PostOrderSplit 112 111 113 112 113 113
LogSplit 112 111 113 112 113 113

SubtreeSplit 261 266 263 265 263 276

PAIX PostOrderSplit 250 249 251 251 252 253
LogSplit 250 249 251 251 252 253
Copyright © 2007 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2008; 21:115-133

DOI: 10.1002/dac

ON A TRIE PARTITIONING ALGORITHM FOR POWER-EFFICIENT TCAMs

Table III. The number of data TCAM blocks versus the size of a data TCAM block.

127

m 128 256 512 1024 2048 4096
SubtreeSplit 331 169 83 40 21 11
AADS PostOrderSplit 252 125 63 32 16
LogSplit 251 125 63 32 16 8
SubtreeSplit 887 441 226 114 56 28
PAIX PostOrderSplit 680 338 169 85 43 22
LogSplit 679 338 169 85 43 22
350 1000
300 —| 900 4+— DSubtreeSplit H
I oSubtreeSplit || @ PostOrderSplit
[.ioi’IOrgif"s‘pm £ 800 ologsplt 1
§ 2504 OLogSplit § 7004
))
= 200l = 600
P S s00H
E 150 E 400
3 100 S 3001
© © 1]
% 5ol v 200
100H i
07528 ~ 256 512 1024 2048 4096 07428 " 256 ~ 512 1024 2048 4096
(a) Size of data TCAM block (b) Size of data TCAM block
Figure 10. The number of data TCAM blocks versus the size of a data
TCAM block: (a) AADS and (b) PAIX.
Table IV. The number of the index prefixes versus the size of a data TCAM block.
m 128 256 512 1024 2048 4096
SubtreeSplit 331 169 83 40 21 11
AADS PostOrderSplit 1671 885 458 250 135 64
LogSplit 920 530 302 153 33 45
SubtreeSplit 887 441 226 114 56 28
PAIX PostOrderSplit 4096 2175 1216 633 346 185
LogSplit 2419 1322 752 410 219 122

Table IV lists the number of the index prefixes generated by these three algorithms versus the
size of a data TCAM block. Though SubtreeSplit generates the least number of index prefixes
(one per block), it uses many more data TCAM blocks (see Table III). As expected, LogSplit
generates much fewer index prefixes than PostOrderSplit. The number of index prefixes generated
by LogSplit is from 55 to 70% of that generated by PostOrderSplit.

Copyright © 2007 John Wiley & Sons, Ltd.

Int. J. Commun. Syst. 2008; 21:115-133

DOI: 10.1002/dac

128 H. LU

1800 4500

O SubtreeSplit | | OSubtreeSplit ||
1600 m PostOrderSplit 4000 W PostOrderSplit]
OLogSplit OLogSplit

3500
3000
2500
2000
1500
1000

500

of Index prefixes
of Index prefixes

128 256 512 1024 2048 4096 128 256 512 1024 2048 4096
(a) Size of data TCAM block (b) Size of data TCAM block

Figure 11. The number of the index prefixes versus the size of a data TCAM block.

80.0 140.0
— O SubtreeSplit O SubtreeSplit
70.0 = m PostOrderSplit — 120.0] — B PostOrderSplit [
§ OLogSplit :o: OLogSplit
§ 60.0 11 § 100.0
c o s =
g 50.0 g 80.0H
$ w00 2
60.0
€ 300 H °
) g 4001
5 20.0 | — E
il . I
ool il I i
128 256 512 1024 2048 4096 128 256 512 1024 2048 4096
(a) Size of data TCAM block (b) Size of data TCAM block

Figure 12. The power reduction factor versus the size of a data TCAM block: (a) AADS and (b) PAIX.

The power reduction factors are listed in Table V. The power reduction factor is defined as n
over the sum of the number of index prefixes and m. The power consumption of the single-TCAM
lookup is determined by n (the number of prefixes in the RT), since all TCAM entries are enabled
for search. The power consumption of trie-based architecture (Figure 1) is determined by the size
of the index TCAM and m (the size of a data TCAM block), since only the index TCAM and
one data TCAM block are enabled for search. As shown in Table V, SubtreeSplit has the best
power reduction ability. This comes without any surprise, since SubtreeSplit wastes data TCAM
blocks to achieve small index TCAM size. The power reduction factor of LogSplit is always higher
than that of PostOrderSplit. LogSplit achieves 65% for PAIX and 71% for AADS more power
reduction than PostOrderSplit when m = 128. When the size of a data TCAM block increases, the
advantage of SubtreeSplit and LogSplit over PostOrderSplit gradually decreases. This is because
the power consumption of one data TCAM block starts to dominate. However, the large value
of m is not desirable, since power reduction is limited when m is large. For example, the power

Copyright © 2007 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2008; 21:115-133
DOL: 10.1002/dac

ON A TRIE PARTITIONING ALGORITHM FOR POWER-EFFICIENT TCAMs 129

Table V. The power reduction factor versus the size of a data TCAM block. The largest power reduction
factor of each algorithm is underlined.

m 128 256 512 1024 2048 4096

SubtreeSplit 69.3 74.9 53.5 29.9 15.4 7.7

AADS PostOrderSplit 17.7 279 32.8 25.0 14.6 7.7
LogSplit 30.4 40.5 39.1 27.0 14.9 7.7

SubtreeSplit 84.7 123.4 116.5 75.6 40.9 20.9

PAIX PostOrderSplit 20.4 354 49.8 51.9 35.9 20.1
LogSplit 33.8 54.5 68.0 60.0 37.9 20.4

Table VI. Worst-case performance.

SubtreeSplit PostOrderSplit LogSplit
Number of data TCAM blocks r2n/m] | 729 | Esd
Size of index TCAM r2n/m | | o+ 1) | it | togy m

reduction factor of PostOrderSplit is only 7.7 for AADS when m =4096, comparing with 32.8
when m = 512. Also, observe that the smallest m does not lead to the maximum power reduction.
The largest power reduction factor of each of the three algorithms is underlined in Table V.

4.2. Performance in the worst case

It is well known that router designers have to work with the worst-case requirement for the size of
the index TCAM and the overall power consumption. Current core routers are expected to handle
RTs with more than one million prefixes.

Table VI gives the worst-case performance of each of these three trie-partitioning algorithms. In
the worst case, SubtreeSplit uses only half of the entries in each data TCAM block. Thus, the number
of data TCAM blocks needed under SubtreeSplit is [2n/m]. Since SubtreeSplit contributes one
entry per data TCAM block to the index TCAM, the size of the index TCAM is [2n/m]. In addition,
SubtreeSplit adds up to one covering prefix to each data TCAM block. When a data TCAM block is
half full, it has space to accommodate the covering prefix. PostOrderSplit adds up to W4-1 covering
prefixes to each data TCAM block. Let k be the number of data TCAM blocks needed. We have
(k—=1)m<k(W +1)+n, where (k— 1)m is the total number of entries in the first k — 1 data TCAM
blocks, and k(W +1) +n is the total number of prefixes stored at the data TCAM blocks. Hence, the
worst-case number of data TCAM blocks needed under PostOrderSplitis [(n +m)/(m — W — 1)].
Since PostOrderSplit contributes up to W + 1 entries per data TCAM block to the index TCAM,
the size of the index TCAM is k(W + 1)=|(n +m)/(m — W — 1) (W + 1). LogSplit adds up
to log, m covering prefixes to each data TCAM block and contributes up to log, m prefixes per
data TCAM block to the index TCAM. We can obtain the worst-case bound using the inequality:
(k —)m<klog, m + n. Note that the worst-case performances of SubtreeSplit and LogSplit are
independent of W, while the worst-case performances of PostOrderSplit is not.

Copyright © 2007 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2008; 21:115-133
DOL: 10.1002/dac

130 H. LU

Table VII. The worst-case number of data TCAM blocks versus the size of a data TCAM block.

m 512 1024 2048 4096 8192 16384
SubtreeSplit 3907 1954 971 489 245 123
PostOrderSplit IPv4 2088 1010 497 247 123 62
IPv6 2612 1118 522 253 125 62
LogSplit 1978 984 491 245 123 62

Note: n = 1000 000.

4,500

O SubtreeSplit
W PostOrderSplit IPv4 —
OPostOrderSplit IPv6

3,500 H OLogSplit —

4,000

3,000

2,500 1
2,000 1 = —|
1,500

1,000 M H

of data TCAM blocks

500 i i n

512 1024 2048 4096 8192 16384
size of data TCAM block

Figure 13. The worst-case number of data TCAM blocks versus the size of a data TCAM block.

Table VIII. The worst-case number of the index prefixes versus the size of a data TCAM block.

m 512 1024 2048 4096 8192 16384
SubtreeSplit 3907 1954 977 489 245 123
PostOrderSplit 1Pv4 68904 33330 16401 8151 4059 2046
IPv6 336948 144222 67338 32637 16125 7998
LogSplit 12339 6820 3743 2037 1108 601

Note: n = 1000 000.

Table VII (plotted in Figure 13) lists the worst-case number of data TCAM blocks needed,
versus the size of a data TCAM block, when n =1000000. LogSplit uses the least number of
data TCAM blocks. Due to the overhead posed by covering prefixes, PostOrderSplit wastes 30%
of data TCAM space when m =512 and W =128 (IPv0).

Table VIII (plotted in Figure 14) lists the worst-case number of the index prefixes (i.e. the size
of the index TCAM), versus the size of a data TCAM block, when n = 1000 000. SubtreeSplit
generates the least number of index prefixes. The number of index prefixes generated by Pos-
tOrderSplit is significant, especially when W = 128. For example, when m =512 and W =128,
PostOrderSplit generates up to 336948 index prefixes, which is 34% of the RT size. But for
LogSplit, the size of the index TCAM is under 1.2% of the RT size. The advantage of LogSplit

Copyright © 2007 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2008; 21:115-133
DOL: 10.1002/dac

ON A TRIE PARTITIONING ALGORITHM FOR POWER-EFFICIENT TCAMs 131

400,000
O SubtreeSplit
B PostOrderSplit IPv4
350,000 — OPostOrderSplit IPv6 | |
[LogSplit
300,000 —
»
%
& 250,000 +—
o
I3
% 200,000 T
o
£
5 150,000 +— —
3+
100,000 +—
50,000 1 I
0. 1 I - J J =

512 1024 2048 4096 8192 16384
size of data TCAM block

Figure 14. The worst-case number of index prefixes versus the size of a data TCAM block.

Table IX. The worst-case power reduction factor versus the size of a data TCAM block.

m 512 1024 2048 4096 8192 16384
SubtreeSplit 226.3 335.8 330.6 218.1 118.5 60.6
PostOrderSplit IPv4 14.4 29.1 54.2 81.7 81.6 54.3
IPv6 3.0 6.9 14.4 272 41.1 41.0
LogSplit 77.8 127.5 172.7 163.1 107.5 589

Note: n=1000000. The largest power reduction factor of each algorithm is underlined.

over PostOrderSplit is more significant when m becomes smaller. The index TCAM size of LogSplit
is 18-30% of that of PostOrderSplit for IPv4, and less than 1% of that of PostOrderSplit for IPv6.

Table IX (plotted in Figure 15) lists the worst-case power reduction factor, versus the size of a
data TCAM block, when n» = 1000 000. The power reduction factor is equal to n over the sum of
m and the size of the index TCAM. As expected, the ability of PostOrderSplit to save power is
severely limited by W, especially when m is small. For example, when m = 2K, the worst-case
power reduction factor of PostOrderSplit is 54.2 for IPv4 and 14.4 for IPv6, while the worst-case
power reduction factor of LogSplit is 172.7. The largest power reduction factor of PostOrderSplit
is 81.7 for IPv4 and 41.1 for IPv6, while the largest power reduction factor of LogSplit is 172.7
for both IPv4 and IPv6. Though SubtreeSplit achieves the largest power reduction factor (335.8),
it wastes half of the entries in data TCAM blocks.

4.3. Reduce index TCAM size further

LogSplit adds one prefix into index TCAM for each subtrie pruned. It may not be worthwhile to
do so for subtries that have only a few prefixes. Besides, since RTs are frequently updated and
an overflowing TCAM block requires expensive repartitioning, a few data TCAM entries should
be reserved to avoid frequent overflow. Note that the size of a subtrie (i.e. the count value of the

Copyright © 2007 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2008; 21:115-133
DOL: 10.1002/dac

132 H. LU

400.0+
O SubtreeSplit
350.0 B PostOrderSplit IPv4 —|
] M O PostOrderSplit IPv6
- OLogSplit ||
5 300.0
3
"E 250.0
0 M _
S 200.0
o
o H 5
5 150.0 11
z : :
a 100.0 + 1 —j_
0.0H : I

512 1024 2048‘ 4096‘ 8192 16384
size of data TCAM blocks

Figure 15. The worst-case power reduction factor versus the size of a data TCAM block.

subtrie root) pruned by LogSplit is strictly exponentially decreasing (Line 07 in Figure 6). The
last four iterations (Lines 07-13 in Figure 6) find subtries containing 16, 8, 4,2 and 1 prefixes,
respectively, in the worst case. Therefore, we can reduce the worst-size number of iterations (each
iteration prunes a subtrie) by four if we plan to reserve 31 empty entries per data TCAM block.

5. RELATED WORK

McAuley and Francis [1] use TCAM for RT lookup. Kobayashi et al. [5] associate each TCAM
entry with a priority to eliminate the need to sort TCAM in the descending order of prefix length.
Shah and Gupta [2] propose efficient algorithms to insert/delete a TCAM entry. Liu [6] proposes
two techniques, pruning and mask extension, to compact router tables stored in TCAM. Ravikumar
and Mabhapatra [7] also use prefix properties to compact TCAM entries.

Panigrahy and Sharma [8] propose the idea of partitioning prefixes into equally sized groups. The
partition is based on the bits selected from prefixes. The search only goes to one group in order to
reduce power consumption. Zane et al. [3] give a greedy algorithm to select the bits and propose
trie-based architecture, which is more efficient than the bit-selection based architecture. Zheng
et al. [9] use bits 10-13 in IPv4 prefixes to partition a RT into 16 groups, and then use a greedy
algorithm to assign and duplicate groups into different TCAM blocks to achieve power reduction
and load balance. The scheme requires traffic statistics in order to determine duplications.

6. CONCLUSION

TCAM, which uses parallelism to achieve lookup in a single cycle, is a simple and efficient solution
for RT lookup. However, TCAM has very high-power consumption because it simultaneously
checks all memory entries. The trie-based architecture reduces power consumption. The idea is
to use a index TCAM (always on) to select only one of many data TCAM blocks for lookup.
Zane et al. [3] propose SubtreeSplit and PostOrderSplit to partition one-bit tries. SubtreeSplit uses

Copyright © 2007 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2008; 21:115-133
DOL: 10.1002/dac

ON A TRIE PARTITIONING ALGORITHM FOR POWER-EFFICIENT TCAMs 133

only half of the data TCAM blocks in the worst case. Although PostOrderSplit fully utilizes each
data TCAM block except the last one, its effectiveness in power reduction is limited, because it
generates a large index TCAM. In the worst case, PostOrderSplit generates W + 1 index TCAM
entries per data TCAM block, where W is 32 for IPv4 and 128 for IPv6. Since router designers
have to use the worst-case bound to decide a power budget, it is necessary to reduce the worst-case
size of the index TCAM.

In this paper we develop a new trie-partitioning algorithm, LogSplit, to reduce power consump-
tion. Each data TCAM block contributes at most log, m entries to the index TCAM for both
IPv4 and IPv6, where m is the maximum number of entries in one data TCAM block. For two
real-world RTs, the number of index prefixes generated by LogSplit is 55-70% of that generated
by PostOrderSplit (Table IIT); the largest power reduction factor of LogSplit is 41 for AADS and
68 for PAIX, while the largest power reduction factor of PostOrderSplit is 33 for AADS and 52
for PAIX (Table V). In the worst case, the index TCAM size of LogSplit is 18-30% of that of
PostOrderSplit for IPv4, and less than 1% of that of PostOrderSplit for IPv6 (Table VIII); the
largest power reduction factor of LogSplit is 173 for both IPv4 and IPv6, while the largest power
reduction factor of PostOrderSplit is 82 for IPv4 and 41 for IPv6 (Table IX). Since the index
TCAM is always enabled for search and it counts for a significant portion of the overall power
consumption, especially when m is small, reducing the size of the index TCAM makes lookup
engines cooler.

REFERENCES

1. McAuley A, Francis P. Fast routing table lookups using CAMs. IEEE INFOCOM, San Francisco, CA, U.S.A.,
1993; 1382-1391.

2. Shah D, Gupta P. Fast updating algorithms for TCAMs. IEEE Micro 2001; 21(1):36-47.

3. Zane F, Narlikar G, Basu A. CoolCAMs: power-efficient TCAMs for forwarding engines. [EEE INFOCOM,
San Francisco, CA, U.S.A., 2003.

4. Merit, IPMA statistics. http://nic.merit.edu/ipma, 2000, 2001.

5. Kobayashi M, Murase T, Kuriyama A. A longest prefix match search engine for multi-gigabit IP processing.
Proceedings of the International Conference on Communications (ICC 2000), New Orleans, U.S.A., 2000.

6. Liu H. Routing table compaction in ternary CAM. [EEE Micro 2002; 22(1):58-64.

7. Ravikumar VC, Mahapatra RN. TCAM architecture for IP lookup using prefix properties. IEEE Micro 2004;
24(2):60—-69.

8. Panigrahy R, Sharma S. Reducing TCAM power consumption and increasing throughput. 10th Symposium on
High Performance Interconnects HOT Interconnects (Hotl’02), Stanford University, CA, U.S.A., 2002.

9. Zheng K, Hu C, Lu H, Liu B. An ultra high throughput and power efficient TCAM-based IP lookup engine.
IEEE INFOCOM, Hong Kong, China, 2004.

AUTHOR’S BIOGRAPHY

Haibin Lu received the BE and ME degrees in electronic engineering from Tsinghua
University, Beijing, China, in 1997 and 1999, and the PhD degree in computer engi-
neering from the University of Florida in 2003. He joined the faculty of the Department
of Computer Science, University of Missouri-Columbia, as an Assistant Professor in
2003. His primary research focus lies in algorithmic aspects of computer network and
multimedia communication.

Copyright © 2007 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2008; 21:115-133
DOL: 10.1002/dac

